
Predicting Regional Emissions and Near-Field Air
Concentrations of Soil Fumigants Using Modest Numerical

Algorithms: A Case Study Using 1,3-Dichloropropene

S. A. CRYER,* I. J. VAN WESENBEECK, AND J. A. KNUTESON

Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, Indiana 46268

Soil fumigants, used to control nematodes and crop disease, can volatilize from the soil application
zone and into the atmosphere to create the potential for human inhalation exposure. An objective for
this work is to illustrate the ability of simple numerical models to correctly predict pesticide volatilization
rates from agricultural fields and to expand emission predictions to nearby air concentrations for use
in the exposure component of a risk assessment. This work focuses on a numerical system using
two U.S. EPA models (PRZM3 and ISCST3) to predict regional volatilization and nearby air
concentrations for the soil fumigant 1,3-dichloropropene. New approaches deal with links to regional
databases, seamless coupling of emission and dispersion models, incorporation of Monte Carlo
sampling techniques to account for parametric uncertainty, and model input sensitivity analysis.
Predicted volatility flux profiles of 1,3-dichloropropene (1,3-D) from soil for tarped and untarped fields
were compared against field data and used as source terms for ISCST3. PRZM3 can successfully
estimate correct order of magnitude regional soil volatilization losses of 1,3-D when representative
regional input parameters are used (soil, weather, chemical, and management practices). Estimated
1,3-D emission losses and resulting air concentrations were investigated for five geographically diverse
regions. Air concentrations (15-day averages) are compared with the current U.S. EPA’s criteria for
human exposure and risk assessment to determine appropriate setback distances from treated fields.
Sensitive input parameters for volatility losses were functions of the region being simulated.
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INTRODUCTION

1,3-Dichloropropene (1,3-D) is an effective nematicide found
in Telone (trademark of Dow AgroSciences) II fumigant, Telone
C-17 fumigant, Telone C-35 fumigant, and InLine (trademark
of Dow AgroSciences) fumigant. 1,3-D is a mixture ofcis- and
trans-1,3-D isomers (approximately 50/50 by weight), both of
which have the propensity to volatilize following application
to soil. Future uses of 1,3-D will likely increase as a replacement
for methyl bromide (a soil fumigant that is being phased out
due to stratospheric ozone depletion issues). Therefore, proper
characterization of 1,3-D transport and exposure is important
for the stewardship and expansion of 1,3-D use in fumigant
markets.

Both empirical (1) and deterministic (2-7) numerical models
have been used to predict fumigant volatilization from soil.
Modeling attempts are typically limited to idealized situations
in which variability in soil, weather, and chemical properties is
ignored. This work focuses on a method to distinguish correct
order of magnitude 1,3-D soil flux predictions on a regional
basis when uncertainty in input parameters is accounted for.

Many factors can affect fumigant volatilization under field
conditions. A sensitivity analysis is paramount in pesticide
exposure modeling to deduce model inputs that create the largest
variance in model predictions (8-10). Sensitivity analysis
addresses parametric uncertainty associated with coefficients
found in mathematical expressions but not the potential vari-
ability that arises from approximating physical phenomena using
these mathematical expressions. Regional predictions for 1,3-D
mass volatilization from soil using a robust deterministic model
can then be addressed once uncertainty in regional parameters
is characterized.

Air concentrations surrounding treated fields are averaged
over specific time periods to obtain exposure values for use in
human risk assessment when exposure is compared to effect.
Air concentrations typically decrease as the distance from a
treated field increases. The U.S. Environmental Protection
Agency (EPA) assumes that lifetime exposure for residential
populations is associated with a series (up to 70) of annual
exposure events, each of which has a duration of 15 days. This
15-day period corresponds to the typical maximum length of
time for off-gassing of 1,3-D following an application. A 15-
day time-weighted multidirectional average air concentration
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of 33.9µg/m3 was deemed the appropriate reference concentra-
tion by the U.S. EPA for human exposure and risk assessment
(11).

This work involves multiple major objectives. The first
objective was to develop and implement a modeling system that
could predict fumigant mass loss and subsequent off-site air
concentrations. The second objective was to obtain appropriate
regional input parameters (soil, weather, management practices,
and physicochemical properties) required by the numerical
system. The third objective was to evaluate the modeling system
against two field study observations. A fourth objective was to
evaluate the sensitivity of the model to uncertainty in input
parameters. Ultimately, the modeling tool will be used to assess
the impact setback distances from treated fields have on 1,3-D
concentrations in air and for comparison to current standards
set by the U.S. EPA for 1,3-D.

MATERIALS AND METHODS

Field Studies.Agronomic field-scale studies for quantifying 1,3-D
volatility from soil have been performed by Dow AgroSciences in
Florida near Immokalee (12) and in the Salinas valley of California
(13). 1,3-D was applied by mechanical shank injection, and the volatility
flux was experimentally determined using the aerodynamic flux method
(AFM; 14, 15). AFM uses atmospheric gradients of wind speed,
temperature, and pesticide concentrations above the soil surface to
estimate the mass-flux of the chemical. All three of these independent
parameters were experimentally measured under field conditions.

Predominant soil series at the study sites in Florida (FL) and
California (CA) were Myakka and Metz, respectively. The raised bed,
tarped, FL study had 1,3-D injected at∼25 cm below the soil surface.
The CA bare soil experiment had 1,3-D shank injected into soil at a
depth of 45.7 cm. Cumulative amounts of measured 1,3-D leaving the
field for the FL and CA sites were 39.9 and 25%, respectively, following
several weeks of monitoring (with trace level emissions detected at
the end of the sampling interval).

Scenarios Used For Regional Assessment.Geographic regions were
selected on the basis of major 1,3-D sales areas (Figure 1). Washington
(WA), California (CA), North Carolina (NC), Georgia (GA), and Florida
(FL) are representative of>95% of the U.S. market for 1,3-D products.
Predominant agricultural soils in these high-use regions were selected
using the U.S. EPA PATRIOT database (16) with the exception of
Washington, where a Quincy loamy sand soil was used. Regional
scenarios used in PRZM3 simulations to determine 1,3-D emission
losses are summarized inTable 1.

Numerical Models Used.Choice of Modeling Algorithms.A method
to distinguish correct order of magnitude 1,3-D soil flux predictions

on a regional basis and to account for uncertainty in input parameters
was sought. The pesticide root zone model (PRZM;17) is used by the
agrochemical industry and the U.S. EPA for predicting pesticide fate
and exposure (18). PRZM3 is a one-dimensional soil compartment
model that addresses hydrology, runoff, erosion, and pesticide dissipa-
tion in the soil root zone. PRZM3 has been predominately used to
predict pesticide leaching and surface runoff patterns and has been
evaluated elsewhere (19-25). However, few studies using PRZM3 to
predict the mass flux of volatile pesticides have been reported (26).

Dow AgroSciences has created many GIS-based numerical tools (that
incorporate PRZM3) to predict surface runoff and leaching of pesticides
(27, 28). Thus, the use of PRZM3 to predict volatilization losses of
soil fumigants is a natural extension of previous research. PRZM3 does
have limitations when dealing with water and solute transport, especially
considering the simplistic approach to water movement. When a soil
layer in PRZM3 exceeds the water-holding capacity, water is moved
downward to the next soil layer in a “tipping bucket” fashion. More
rigorous models use gravity and matric suction gradients (Richards
equation and/or forms thereof;29) to approximate water movement at
the expense of increased input parameters and computer-processing
times required to derive a solution from a discritized solution domain.
Increased computer run times can make stochastic methods such as
Monte Carlo sampling prohibitively long, and thus PRZM3 is a logical
choice for Monte Carlo implementation across a wide spectrum of
computer processors. The ability of PRZM3 to mimic Florida and
California field observations is addressed under Results.

PRZM3 Modifications. (a) Accounting for Tarped Surfaces.PRZM3
accounts for the volatility of pesticides from soil through a zero-
concentration boundary condition for a stagnant air boundary layer at
the soil surface. The volatilization rate is a function of the rate of
movement of the pesticide to the soil surface and varies as the
concentration of a pesticide at the soil surface changes (30). The
boundary layer thickness (d) of this stagnant air layer is estimated using
a water vapor approach (31) and is on the order of several millimeters.
PRZM3 follows the approach of Wagenet et al. (32) who assumed a
constant value of 0.5 cm ford. The mass flux loss across the boundary

Figure 1. Selection of modeling scenarios based upon 1,3-D use information.

Table 1. 1,3-D Scenarios Used in the Stochastic PRZM3 Simulations
for Soil Flux Predictions

location crop soil type application period

Tifton, GA vegetables/tomatoes Tifton loamy sand Aug 10
Clayton, NC tobacco Appling sandy loam May 15
Yakima, WA potatoes Quincy loamy sand Aug 10
Gainesville, FL vegetables/tomatoes Satellite Aug 10
Salinas, CA vegetables Arroyo Seco sandy

loam
Aug 10

Oct 1 (shank only)
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layer at the soil surface is expressed as

whereJv ) volatilization flux of pesticide from soil (g/day),Da )
molecular diffusivity of pesticide in air (cm2/day), A ) area of the
compartment (cm2), Cg ) vapor-phase concentration in the surface soil
layer (g/cm3), Cgs ) vapor-phase concentration above the stagnant air
boundary layer (g/cm3), d ) stagnant air boundary layer thickness (cm),
andh ) mass transfer coefficient (cm3 day-1).

The value ofCgs at the top of the stagnant air boundary layer is
typically zero for a bare soil surface as the wind can easily transport
pesticide mass away from the surface. The termDa/d in eq 1 represents
the mass transfer coefficient (h) for diffusion transport across the
boundary layer, and the reciprocal defines the resistance to mass
transfer. Resistance to mass transfer at the soil surface will increase if
a tarp is present. Thus, the boundary condition (eq 1) can remain the
same, but the boundary layer thickness requires adjustment as the mass
transfer resistance increases when a tarp is added. This approach has
been used by others within the USDA soil model CHAIN_2D (2, 4,
5). Laboratory-determined, temperature-dependent, mass transfer coef-
ficients for 1,3-D have been reported for a polyethylene-based high-
barrier film (HBF) and a virtually impermeable film (VIF) (33) and is
represented by eq 2.

hr
Tr ) reference mass transfer coefficient at a reference temperature

(Tr), Ea
hr ) activation energy for the reference mass transfer coefficient

(J mol-1), êp ) empirical phase adjustment factor accounting for any
phase mismatch,Ta ) air or plastic film temperature (K),Tr ) reference
temperature (K), andR ) universal gas constant (8.314 J mol-1 K-1).

PRZM3 was modified to incorporate changes in the mass transfer
coefficient across the stagnant boundary layer when either a HBF or
VIF tarp was used. New PRZM3 input parametershr

Tr andEa
hr are now

required when a plastic tarp covers the field. The mass transfer
coefficient (eq 2) is updated daily (time step of model) based upon the
daily PRZM3 simulated surface soil temperature. Mass transfer
coefficients and activation energy probability density functions used
in the analysis (when a tarp is present) are summarized inTable 2.

(b) ConVerting Daily Mass Flux Predictions into Hourly Rates.
PRZM3 produces results on a daily time step, whereas many regulatory
air dispersion models operate on an hourly time step. The following
assumptions were used in transforming PRZM3 daily values to hourly
entries. The sum of the hourly emission losses per day total the
cumulative daily loss as predicted by PRZM3. The pesticide application
was always made at 8:00 a.m., and a 4-h delay occurred between the
application and when the first 1,3-D mass left the soil. Delay intervals
of this order are seen in shank injection field trials when injection
knife traces are adequately sealed. The simulated daily pesticide loss
via volatilization (percent of applied) was scaled by the pesticide
application rate, field size, and a sinusoidal weighting function to obtain
an hourly mass flux rate loss as required by Gaussian air dispersion
models. Volatility mass loss was assumed to be twice as high at noon
(i.e., the hottest part of the day) when compared to midnight and varied

in a sinusoidal fashion. Sinusoidal weighting for volatility losses
indirectly accounts for temperature dependence on physicochemical
properties that control the volatility loss of 1,3-D from soil. The sum
of the hourly flux rate over a 24-h interval equals the daily loss
generated by PRZM3. Characteristic results of this approach are given
in Figure 2. Assumptions about the time of day when an application
is made and the sinusoidal weighting of emission losses should not
significantly alter the subchronic air concentration predictions (i.e., 15-
day averages) required for a risk assessment. These assumptions would
obviously be extremely sensitive if the endpoint air concentration was
an instantaneous value or some minor interval (i.e., 1-h average) instead
of the 15-day averages used in this analysis.

Air Dispersion Modeling.The industrial source complex short-term
(ISCST3) (34) model was developed by the U.S. EPA as a regulatory
tool for air dispersion modeling. ISCST3 is a Gaussian plume model
used for estimating air quality surrounding contaminant release sites.
Examples of use include vehicle exhausts in urban areas (35), industrial
sulfur dioxide emissions (36), methyl bromide concentrations resulting
from soil fumigation in rural areas (37), and 1,3-D township-wide air
concentrations for multiple transient agricultural sources within a
California township (38). Meteorological data inputs required by
ISCST3 include hourly air stability class, wind speed, air temperature,
wind direction, and mixing and ceiling height for the airshed. Thus,
the hourly emission flux patterns derived from PRZM3 simulations
are appropriately transported throughout an airshed via the Gaussian
plume analysis that utilizes hourly values for regional meteorological
conditions.

Air dispersion models such as ISCST3 are based upon wind-driven
convection and dispersion. Wind direction exhibits considerable
temporal variability in many agricultural areas of the United States.
An example wind direction pattern (wind rose) is given inFigure 3
for Waycross, GA, for a single year of historical data (EPA SCRAM
website). A wind rose allows the temporal variability to be displayed
in a two-dimensional graphic (polar coordinates). Each petal inFigure
3 represents the percentage of time the wind blew from a particular
direction (in 22.5° gradations) for a range of wind speeds (shades along
a petal) over the 1-year time interval. Wind direction is nearly random
(equal probability of occurring from any direction) for Waycross and
many other regions of the country, although proximity to some
geographic features (e.g., mountains and oceans) may result in
preferential wind directions.

Selecting a specific receptor location near a treated field for air
concentration calculations is not appropriate because air concentrations
will differ depending on temporal variability. Thus, a more accurate
portrayal of air concentrations resulting from soil fumigant treated fields
is a directional average around the entire field. Directional averaging
eliminates problems associated with single-point receptors such as
potentially “missing” the contaminant plume or unecessarily high bias
should receptors be placed downwind over a short time frame sampling
interval. Directional averaging provides a mechanism for comparison

Table 2. 1,3-D Mass Transfer Coefficient and Activation Energy for a
Reference Temperature of 20 °Ca

parameter cis trans

polyethylene film (êp ) +1)
hr

Tr (µm s-1) 3.034 2.33
Ea

hr (J mol-1) 26.282 17.22
Hytibar film (êp ) −1)

hr
Tr (µm s-1) 1.157 × 10-2 2.005 × 10-2

Ea
hr (J mol-1) 222.193 243.86

a Values given by Wang et al. (33) are the mean values assumed for the normal
distribution. Standard deviation for the normal distribution assumed 10% of the
mean value.

Jv ) (DaA/d)(Cg - Cgs) ) hA(Cg - Cgs) (1)

h
A

) hr
Tr exp(Tr - Ta

RTaTr
êpEa

hr) (2)

Figure 2. PRZM3 daily flux profile (percent of applied) converted to hourly
flux (application rate ) 94 kg/ha). Cumulative mass loss via the weighted
hourly flux rate equals that predicted by PRZM3.
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of various management practices when the temporal nature of wind
speed and direction is accounted for.

Receptor locations for air concentration calculations with directional
averaging were selected such that the distances for all receptor nodes
fall exactly at the setback distance of interest. Distances of 7.6, 15.2,
22.9, 30.5, 45.7, 61.0, 76.2, 91.4, 152.4, 304.8, and 457.2 m (25, 50,
75, 100, 150, 200, 250, 300, 500, 1000, and 1500 ft) are generated,
with the spacing between each neighboring receptor being 25 m (Figure
4). All receptors were placed at 1.5 m above the ground to mimic the
breathing height for adults. Each receptor node along one of the
perimeters, seen inFigure 4, is exactly the same distance from the
closest field edge as all other receptors along the perimeter. The
multidirectional 1,3-D air concentration is simply the average of all
receptors falling along one of the equidistant (from field) perimeters
over a specific time interval. The receptor density in this exercise is
adequate to capture a contaminant plume that initiated over the field
boundaries and travels in any direction.

Stochastic Implementation. The stochastic implementation of
PRZM3 and ISCST3, with random weather, was obtained using Monte
Carlo (MC) and Latin hypercube sampling methods (39,40) via visual
basic application (VBA) programming with Microsoft Excel (MS) and
the MS Excel add-in software package Crystal Ball (trademark of
Decisioneering, Inc.). In this way, the source code for either model
did NOT require modification for stochastic implementation and every

input parameter for each model can be assigned uncertainty (if desired).
The use of Crystal Ball with VBA provides an easier and more general
approach to incorporate MC techniques than reported elsewhere where
only a subset of PRZM3 inputs could be varied (41). Probability density
functions (PDFs) for input parameters were sampled for each simulation
year, spreadsheets were updated, a random weather file was chosen
from a weather library for a region of interest, input files were created,
PRZM3 or ISCST3 was executed, and results were imported and
summarized back into Excel. Thus, uncertainty in soil and physico-
chemical properties, random weather years, management practices, and
so forth were described stochastically through definition and sampling
of user-supplied PDFs for model input parameters.

Parameters Utilized.Specific PRZM3 and ISCST3 input parameters
were assumed to be normally or log-normally distributed with the mean
value given by the single-valued magnitude (nominal value) obtained
from respective databases, user manuals, and/or expert judgment. The
distribution standard deviation was assumed to be 10% of the mean
unless actual field or laboratory data were available. It is assumed
variances of this magnitude are adequate to capture the parametric
sensitivities in model input, although actual field variability can be
greater. 1,3-D soil degradation rates in the water and solid phases for
each horizon were assumed to be equal, and degradation in the soil
gas phase was assumed to be negligible. Subsurface soil layers were
assigned 1,3-D degradation rates one-third of the surface horizon. For
a soil horizon having two to three soil layers, the total number of varied
PRZM3 input parameters was 26 or 31, respectively (Table 3).

PRZM3 weather was randomly sampled from the regional weather
library (containing 100 years of meteorological data for each weather
station). Regional weather patterns were generated using the U.S.
Department of Agriculture CLImate GENerator program CLIGEN (42).
Physicochemical parameters for 1,3-D used in this analysis are
summarized inTable 4. Shank injection depths were uniformly
distributed between 30.5 and 61 cm (12-24 in.).

ISCST3 dispersion parameters were fixed at regulatory default values
(34), but other stochastic parameters included weather year, field size,
application date, application rate, and the 1,3-D air degradation
coefficient (Table 5). Management information for WA, NC, GA, and
FL were obtained from>500 grower interviews and records. This
grower survey information resulted in∼1580 records of field sizes
and corresponding application rates for all crops treated in these regions
between 1990 and 2000. Similar information for CA for 1999 was
obtained from California Data Management System, Inc. A log-normal
distribution was fitted to the field size and application rate data with
the exception of WA. WA had many fields exceeding 300 acres. The
maximum number of acres treated by conventional practices is∼5 acres
per hour or∼120 acres per day assuming “around the clock” application
(Ryan Roslak, DAS Telone Specialist, personal communication). Thus,
larger WA fields were divided by 120 acres to arrive at the total number
of “subfields” treated within the region on consecutive days as dictated
by commercial equipment constraints.

Meteorological Data and Regions Simulated.Hourly meteorologi-
cal data required by ISCST3 were obtained from the EPA Support
Center for Regulatory Air Models (SCRAM). SCRAM weather station
locations were selected on the basis of proximity to high-use regions
for 1,3-D (Figure 1). SCRAM information contains U.S. EPA quality
checked and approved weather files specifically for the purposes of
regulatory air quality modeling. Meteorological stability class was
estimated using the program PCRAMMET (43) using measured data
from the closest weather station where mixing height data were
recorded.

Sensitivity Analysis.The integrity of transport modeling results often
depends on the expert judgment of model users to identify input data
requirements (8). A statistically sound sensitivity analysis is vital in
determining which model inputs create the greatest variance on model
output(s), especially if some input parameters are not measured, but
rather empirically estimated. Both principal component analysis (PCA)
and ANOVA methods were used with MC simulation results to deduce
sensitive model input parameters.

Figure 3. Wind rose pattern at Waycross, GA (1984 historical data from
SCRAM).

Figure 4. Example for the relationship of field size to receptor placement
for a 50-acre field.
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RESULTS

Stochastic Volatilization Predictions.Variability in model
output for 500-year PRZM3 stochastic iterations is graphically
illustrated in Figure 5 for a representative South Florida
simulation (shank injection), where daily mass loss is given as
a percentage of applied. The boxes inFigure 5 define the 25th-
75th percentile, whiskers representing the 5th and 95th percen-
tiles, and symbols representing outlier points. Variability in
fumigant mass losses from soil for this scenario is high, ranging

from 1 to 13% of applied for the 24-h interval immediately
following the application.

PRZM3 Comparison against Field ObserVations.Comparison
between field observations and the best-fit PRZM3 predictions
is given in Figure 6 for simulated percentile values of 84.4
and 89.6 for Florida and California, respectively. Results from
the two-dimensional finite element model for water and solute
transport (CHAIN_2D;2) are also provided for the Florida
scenario. Correct order of magnitudes for cumulative volatiliza-
tion losses are recovered by PRZM3 when compared to both
experimental observations and rigorous model predictions
(CHAIN_2D). PRZM3 predictions at∼85% percentile do a
reasonable job of mimicking field observations for these field
studies. Thus, the 85th percentile was empirically chosen as a
reasonable exceedence percentile for PRZM3 modeling for
geographic regions lacking field observations. This would be

Table 3. Soil and Management Properties Stochastically Varied in PRZM3 Simulations (Subscript Denotes Soil Layer i)a

parameter CA FL GA NC WA

weather location Salinas Gainesville Tifton Clayton Yakima
soil type Arroyo Seco sandy loam Satellite Tifton loamy sand Appling sandy loam Quincy loamy sand
crop type vegetables vegetables/tomatoes vegetables/tomatoes tobacco potatoes
appl type shank, drip shank, drip shank, drip shank, drip shank
appl period Aug 10, Oct 1 Aug 10 Aug 10 May 15 Aug 10
appl rate (kg/ha) 99.4−614.5 U 112.7 (σ ) 6, N) 112.7 (σ ) 6, N) 99.4−614.5 U 112.7 (σ ) 6, N)
CN2 72 (σ ) 2, N) 72 (σ ) 2, N) 78 (σ ) 2, N) 78 (σ ) 2, N) 77 (σ ) 2, N)
DOI (cm) 40.7 (30.5−50.8 U) 30 N (30.5−50.8 U) (30.5−50.8 U) (30.5−50.8 U)
QFAC 4.0 N 4.0 N 4.0 N 4.0 N 4.0 N
soil reflectivity 0.97 N 0.97 N 0.95−0.98 U 0.95−0.98 U 0.95−0.98 U
BDi 1.25, 1.53, 1.55 N 1.27, 1.27 N 1.42, 1.55 N 1.52, 1.35, 1.35 N 1.35, 1.45 N
ISWCi 0.255, 0.231, 0.190 N 0.114, 0.085 N 0.156, 0.257 N 0.194, 0.437, 0.447 N 0.118, 0.049 N
Tbottom (°C) 22.0 N 23.0 N 22.0 N 22.0 N 22.0 N
soil albedo 0.18 N 0.40 N 0.40 N 0.18 N 0.40 N
FCi 0.255, 0.231, 0.190 N 0.114, 0.085 N 0.156, 0.257 N 0.194, 0.437, 0.447 N 0.118, 0.049 N
WPi 0.139, 0.133, 0.117 N 0.045, 0.030 N 0.084, 0.159 N 0.134, 0.391, 0.318 N 0.052, 0.031 N
OCi 1.16, 0.10, 0.10 N 1.30, 0.10 N 0.291, 0.436 N 0.727, 0.145, 0.145 N 1.00, 0.30 N

a Mean values represented in table with PDF assumed (N ) normal, U ) uniform).

Table 4. Physicochemical Stochastic Properties Used in PRZM3 Analysis

parameter µ/σ or range distribution

Henry’s coefficient, cis (cm3 cm-3), at 25 °C 0.0599/0.0060 normal
Henry’s coefficient, trans (cm3 cm-3) at 25 °C 0.0349/0.0035 normal
enthalpy of vaporization (cis ) trans) (kcal mol-1) 9.60/0.96 normal
surface soil degradation rate constant (water phase) (day-1) 0.082/0.078 log-normal
surface soil degradation rate constant (solid phase) (day-1) 0.082/0.078 log-normal
soil/water equilibration partition coefficient (KD) (cis ) trans) (cm3 g-1) 0.658/0.459 log-normal
diffusion coefficient in air (cis ) trans) (cm2 day-1) 7499/750 normal

Table 5. Stochastic Properties Used in ISCST3 Analysis

parameter µ/σ or range distribution type

CA field size (acre) 40.2/73.3 log-normal
CA appl rate (kg/ha) 10 e rate e 380 custom
CA appl date (Julian) Jan−Dec uniform

FL field size (acre) 80.3/106.7 log-normal
FL appl rate (kg/ha) 94.1/25.3 log-normal
FL appl date (Julian) Jan−March

Aug−Nov
uniform

GA field size (acre) 58.3/87.0 log-normal
GA appl rate (kg/ha) 79.7/32.6 log-normal
GA appl date (Julian) Feb−April uniform

NC field size (acre) 13.9/12.2 log-normal
NC appl rate (kg/ha) 90.6/28.9 log-normal
NC application date (Julian) Feb−April uniform

WA field size (acre) 5 e acre e 120 custom
WA appl rate (kg/ha) 40 e rate e 340 custom
WA appl date (Julian) Aug−Oct uniform

1,3-D deg rate constant
in air (s-1)

1.60 × 10-5/
3.20 × 10-6

normal

weather year 1984−1991
(or 1992)

uniform

Figure 5. Discrete mass loss distribution for FL simulations using PRZM3
(shank, 10-in. incorporations, Satellite soil, Avon Park, FL, weather).
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an indication that PRZM3 underpredicts shank injection mass
losses and therefore percentiles>50% would have to be used
for median predictions (assuming these field trials represent
median behavior for their appropriate regions). If a polyethylene
tarp is used, then cumulative results are reduced by∼49%.

Selection of Regional Flux Distribution.The empirical best-
fit percentile value of 85% for cumulative 1,3-D volatilization
loss following shank injection was used with all other regions
(CA, FL, GA, NC, and WA) when representative, regionally
specific, 1,3-D volatility profiles were selected (Figure 7).
Regions having the highest predicted 1,3-D mass loss include
FL and WA. Elevated daily temperatures and higher soil
porosity contribute to the increased mass loss over other
scenarios. The predicted PRZM3 cumulative volatilization loss
for shank-injected 1,3-D ranged from 8.3 to 45.5% of applied
(for PRZM3 predictions at the 85th exceedence percentile and
the five regions investigated).

PRZM3 Sensitivity Analysis. Cubic equationR2 and P
values for the linear term, squared, and cubic terms for each
parameter in a linear analysis were documented. ANOVA results
for individual parameters were sorted byR2. ANOVA results
indicate parameters affecting soil temperature are routinely
sensitive for both cumulative and daily maximum volatility
losses for 1,3-D. Temperature parameters include soil reflec-
tivity, albedo, temperature of the bottom soil horizon, and QFAC
(factor for the rate increase in physicochemical properties when

the soil temperature increased by 10°C). Sensitive soil
properties were bulk density, field capacity, wilting point,
organic carbon, and initial soil water content at application (for
various layers within the soil). Sensitive physicochemical
properties included diffusion coefficients in air and Henry’s
coefficients for both isomers, soil-water partition coefficient
for the trans isomer, and soil degradation coefficients (both
isomers, shank injection only). Other sensitive parameters for
several regions include the SCS curve number and pesticide
incorporation depth. All parameters having aP value ofe0.05
were assumed to be sensitive. Representative sensitivity analysis
results are illustrated for the FL simulation inTable 6 for shank
(bare soil). Percent of explainable variance is calculated using
ANOVA techniques. Parameter nomenclature and descriptions
are found in the Glossary.

Regional Air Concentration Predictions. Figure 8 repre-
sents exceedence percentile functions for 1,3-D concentrations
in air (15-day average) at a 100-ft buffer zone surrounding the
treated field for each of the five regions investigated. A buffer
zone is defined as the minimal distance from the edge of a
treated field to structures where individuals may reside. Results
were obtained via 500 ISCST3 Monte Carlo iterations in which
the volatilization mass loss functions given inFigure 7 were
used. The highest concentrations at the higher percentiles were
found in WA, where field sizes and application rates (mainly
for potatoes) tended to be greater. The lowest concentrations,
even at the higher percentiles, are found in NC, where field
sizes and 1,3-D application rates (typically tobacco) tend to be
smaller.

Figure 6. Comparison of PRZM3 predictions at the 84.5 and 89.6
percentile values for FL (10-in. shank bed) and CA (18-in. shank),
respectively, to field observations (shank injection). FL simulation results
using CHAIN_2D are also provided.

Figure 7. PRZM3 predicted cumulative mass loss of 1,3-D for various
geographically different regions [shank injection (12−24 in.), bare soil].

Table 6. Regional PRZM3 Sensitivity Analysis (P Value e 0.05) for
1,3-D Flux to Atmosphere for Shank Injection Applications (Bare Soil),
FL Scenario

FL cumulative shank
% variance explained

(sensitive parameters only)

inc depth 19.2
QFAC 16.2
Henry’s coefficient, trans 15.4
soil reflectivity 14.6
wsID 10.8
WP-2 8.5
FC-2 7.7
deg, cis 7.7

Figure 8. Simulated subacute (15 day average) concentrations of 1,3-D
in air at the 100-ft buffer distance for WA, NC, GA, FL, and CA represented
as an exceedence percentile function.
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Predicted 50th percentile air concentrations (15-day multi-
directional) surrounding treated fields are presented inFigure
9 for five regions with various buffer setback distances. Air
concentrations are below what the U.S. EPA considers to be
acceptable (33.9µg m-3; 11) for all regions, suggesting 30.5
m (100-ft) buffers will offer a conservative measure for
mitigating air exposure values. In many cases, a much smaller
buffer surrounding a treated field may be acceptable.

ISCST3 Sensitivity Analysis. ANOVA results indicate a
multiparametric linear equation using primary and cross terms
does a reasonable job of approximating the ISCST3 exposure
data.R2 values ranged from 0.70 to 0.90 for all regions and
buffer distances analyzed in this assessment. Application rate
and field size were consistently the most sensitive parameters
for all of the regions simulated. The relative sensitivities for
the application rate and field size decreased and increased,
respectively, as the buffer setback distance increased. Thus, for
near-field buffers [<61 m (200 ft)], the application rate is the
most sensitive parameter for a 15-day multidirectional air
concentration. For far-field buffers [>61 m (200 ft)], the field
size becomes the most sensitive parameter (Figure 10). Figure
10 represents ANOVA explainable variances as a percent
attributable to the parameters investigated for the GA data set.
All other regional data sets exhibited similar behavior. The
parameters in the legend are the weather year (Year), application
date (Date), field size (Area), 1,3-D degradation coefficient in
air (R_Coeff), and appropriate cross terms.

Rate, area, and the combination of (rate× area) account for
∼75% of the variance in the simulation data represented by
Figure 10. The “other” column represents a combination of the
other seven parameters or cross-term parameter combinations
not listed in the legend. Typically, the sensitivities of these
parameters in the “other” category had individual percent
explainable variances between 0 and 2%.

Conclusions.A numerical system was constructed to provide
a seamless integration of Monte Carlo methods, PRZM3,
ISCST3, database relationships, and analysis of results for both
emission losses of soil fumigants and resulting near-field air
concentrations. Comparison between field observations for 1,3-D
emissions and PRZM3 numerical predictions illustrates correct
order of magnitude predictions are attainable (for both the initial
24-h and cumulative totals for 1,3-D volatilization). The
empirically determined 85th percentile of the PRZM3 model
1,3-D flux predictions leads to comparable estimates of field
trial observations for shank injection studies (FL, CA). PRZM3
was then used to extrapolate 1,3-D volatilization loss patterns
to different geographically diverse regions making up the 1,3-D
marketplace where experimental field information was unavail-
able. In general, the total cumulative mass losses occurred in
the following order: FL> WA > CA > GA > NC for shank
injection. Representative cumulative losses of 1,3-D from shank
injection ranged from 8 to 46% of applied (bare soil). Simulation
results indicate tarped fields reduce predicted volatility losses
from shank injection applications by approximately 49% when
compared to the untarped counterpart.

PRZM3 sensitivity analysis indicates parameters affecting the
soil temperature (soil albedo, reflectivity, and temperature at
bottom of soil boundary) and bulk densities are sensitive model
input parameters. Thus, the time of year when 1,3-D applications
are made can effect the total volatilization losses, along with
application equipment that can disturb the soil bulk density.
Sensitive physicochemical properties include diffusion and
Henry’s law coefficients for both isomers and, in several cases,
the 1,3-D soil degradation rate constant.

Numerically generated 1,3-D flux profiles from soil, evaluated
against field observations, were used with air dispersion
modeling to predict region-specific off-site 15-day multidirec-
tional exposure averages for 1,3-D concentrations in air. The
air concentration considered to be acceptable by the U.S. EPA
in the 1998 RED decision (33.9µg/m3) was not exceeded at
the 100-ft buffer distance at the 50th percentile for any of the
five representative 1,3-D use regions simulated. This suggests
the 100-ft buffer zone is a conservative approximation and
provides adequate safety for the population of individuals
residing near treated fields for all 1,3-D uses in the United States.
This statement is based upon current understanding of 1,3-D
concentration estimates at 100-ft buffers and U.S. EPA risk
assessment methodologies found in the 1,3-D Registration
Eligibility Decision (11).

GLOSSARY

AE-Tarp-Cis) activation energy for tarp material for determin-
ing the temperature dependence of the mass transfer coef-
ficient (cis isomer) (J mol-1)

AD ) pesticide application date (Julian)
AR ) pesticide application rate (kg/ha)
BDi ) bulk density of soil layeri (cm3 cm-3)
CN2 ) SCS curve number- crop
CN-Crop) SCS runoff curve number at the time of application
DOI ) depth of incorporation (cm)

Figure 9. Multidirectional 15-day average air concentration predictions
at the 50th percentile for various buffer setback distances.

Figure 10. Percent explainable variance for GA simulation data set as a
function of buffer setback.
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Deg-Air ) first-order degradation coefficient of both isomers
in air (day-1) (used only in ISCST3 simulations)

Deg-Cis) first-order degradation coefficient of cis isomer in
soil (day-1)

Deg-Trans) first-order degradation coefficient of trans isomer
in soil (day-1)

Diff-Cis ) diffusion coefficient of cis isomer in air (cm2 day-1)
Diff-Trans ) diffusion coefficient of trans isomer in air (cm2

day-1)
enthalpy vapor) enthalpy of vaporization (assumed cis) trans)

(kcal mol-1)
FCi ) field capacity of soil layeri (cm3 cm-3)
FS ) field size (hectares)
Henry-trans) Henry’s law coefficient for the trans isomer (cm3

cm-3)
Henry-cis) Henry’s law coefficient for the cis isomer (cm3

cm-3)
inc. depth) pesticide incorporation depth into soil at time of

application (cm)
ISWCi ) initial soil water content of soil layeri (cm3 cm-3)
Kd-Cis) soil/water equilibrium partition coefficient for the cis

isomer (cm3/g)
Kd-Trans) soil/water equilibrium partition coefficient for the

trans isomer (cm3/g)
OCi ) organic carbon percent of soil layeri
QFAC ) factor for rate increase when temperature increases

by 10°C for Henry’s coefficient and enthalpy of vaporization
estimates

soil albedo) physical parameter controlling the flux of energy
at the interface between the soil and atmosphere (function of
soil reflectivity)

soil reflectivity ) reflectivity of soil surface to longwave
radiation (fraction)

Tbottom ) temperature at the bottom boundary (°C)
WPi ) wilting point of soil layeri (cm3 cm-3)
wsID ) unique weather station ID given to a randomly

generated weather file
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